
Lecture 11 Slide 1PYKC 19 Nov 2024 EE2 Circuits & Systems

Lecture 11

Finite State Machines

Peter Cheung
Imperial College London

URL: www.ee.imperial.ac.uk/pcheung/teaching/EE2_CAS/
E-mail: p.cheung@imperial.ac.uk

Lecture 11 Slide 2PYKC 19 Nov 2024 EE2 Circuits & Systems

Lecture Objectives

u To learn how to analyse a state machine
u To learn how to design a state machine to meet specific objectives
u Learn how to specify a FSM in SystemVerilog
u How to combine a FSM with a counter to control state transition

Lecture 11 Slide 3PYKC 19 Nov 2024 EE2 Circuits & Systems

Synchronous State Machines

u Synchronous State Machine (also called Finite State Machine FSM)

- The current state is defined by the register contents
- Register has k flipflops Þ 2k possible states
- The state only ever changes on CLOCK

- We stay in a state for an exact number of CLOCK cycles
- The state is the only memory of the past
- Output can depend on both current state and current input – Mealy FSM

Rules:
q Never mess around with the clock signal
q Always initialise the FSM to a known initial state on reset or power ON.

current

Mealy FSM

Lecture 11 Slide 4PYKC 19 Nov 2024 EE2 Circuits & Systems

Simple FSM – Moore FSM

u Three parts:
v State registers
v Next state logic
v Output logic

u Moore FSM – special case of Mealy FSM, output depends only on current state

Moore FSM

Lecture 11 Slide 5PYKC 19 Nov 2024 EE2 Circuits & Systems

Analysing a State Machine

State Table:
u Truth table for the combinational

logic:
- One row per state: n flipflops Þ 2n

rows
- One column per input combination:

m input signals Þ 2m columns

- Each cell specifies the next state
and the output signals during the
current state
- for clarity, we separate the two

using a /

Current state

Next state

Lecture 11 Slide 6PYKC 19 Nov 2024 EE2 Circuits & Systems

Drawing the State Diagram

u Split state table into two parts: next state table and output table

u Transition arrows are marked with Boolean
expressions saying when they occur
- Every input combination has exactly

one destination.
- Unlabelled arrows denote unconditional

transitions
u Output Signals: Boolean expressions

within each state

Lecture 11 Slide 7PYKC 19 Nov 2024 EE2 Circuits & Systems

u Output Signals:
Defined by Boolean expressions within each state.
If all the expressions are constant 0 or 1 then outputs only ever change on
clock . (Moore machine)
If any expressions involve the inputs (e.g. Y=A) then it is possible for the
outputs to change in the middle of a state. (Mealy machine)

Timing Diagram

u State machine behaviour is entirely determined by:
- The initial state
- The input signal waveforms

u State Sequence:
- Determine this first. Next state

depends on input values just before
CLOCK

Lecture 11 Slide 8PYKC 19 Nov 2024 EE2 Circuits & Systems

Self-Transitions

u We can omit transitions from a
state to itself
- Aim: to save clutter on the

diagram

u The state machine remains in its
current state if none of the
transition-arrow conditions are
satisfied
- From state 2, we go to state 3 if

!A occurs, otherwise we remain
in state 2

Lecture 11 Slide 9PYKC 19 Nov 2024 EE2 Circuits & Systems

Output Expressions on Arrows
u It may make the diagram clearer to put

output expressions on the arrows instead of
within the state circles:
- Useful if the same Boolean expression

determines both the next state and the
output signals

- For each state, the output specification must
be either inside the circle or else on every
emitted arrow

- If self transitions are omitted, we must declare
default values for the outputs

• Outputs written on an arrow apply to the state
emitting the arrow.

• Outputs still apply for the entire time spent in a
state

• This does not affect the Moore/Mealy distinction
• This is a notation change only

Lecture 11 Slide 10PYKC 19 Nov 2024 EE2 Circuits & Systems

Example 1: Divide by 3 FSM (Moore)

IDLE

S1

S2
OUT = 1

Default: OUT = 0

Lecture 11 Slide 11PYKC 19 Nov 2024 EE2 Circuits & Systems

Example 2: Design a Noise Pulse Eliminator (1)

! Design Problem: Noise elimination circuit
- We want to remove pulses that last only one clock cycle

u Use letters a,b,… to label states; we
choose numbers later.

u Decide what action to take in each
state for each of the possible input
conditions.

u Use a Moore machine (i.e. output is
constant in each state). Easier to
design but needs more states & adds
output delay.

Lecture 11 Slide 12PYKC 19 Nov 2024 EE2 Circuits & Systems

Design a Noise Pulse Eliminator (2)
1. If IN goes high for two (or more) clock cycles then OUT must go high, whereas if it goes

high for only one clock cycle then OUT stays low. It follows that the two histories “IN low
for ages” and “IN low for ages then high for one clock” are different because if IN is high
for the next clock we need different outputs. Hence we need to introduce state b.

2. If IN goes high for one clock and then goes low again, we can forget it ever changed at all.
This glitch on IN will not affect any of our future actions and so we can just return to state
a.
If on the other hand we are in state b and IN stays high for a second clock cycle, then the
output must change. It follows that we need a new state, c.

3. The need for state d is exactly the same as for state b earlier. We reach state d at the end
of an output pulse when IN has returned low for one clock cycle. We don’t change OUT
yet because it might be a false alarm.

4. If we are in state d and IN remains low for a second clock cycle, then it really is the end of
the pulse and OUT must go low. We can forget the pulse ever existed and just return to
state a.

Each state represents a particular history that we need to
distinguish from the others:
state a: IN=0 for >1 clock state b: IN=1 for 1 clock
state c: IN=1 for >1 clock state d: IN=0 for 1 clock

Lecture 11 Slide 13PYKC 19 Nov 2024 EE2 Circuits & Systems

Eliminator design in SystemVerilog

Declarations

Lecture 11 Slide 14PYKC 19 Nov 2024 EE2 Circuits & Systems

Example 3 – A pulse generator

u Design a module pulse_gen.v which does the following: on each positive edge of the
input signal IN, it generates a pulse lasting for one period of the input clock.

u Needs THREE states (not two).

Lecture 11 Slide 15PYKC 19 Nov 2024 EE2 Circuits & Systems

Pulse Generator in SV

u Design a module pulse_gen.v which does the following: on each positive edge of the
input signal IN, it generates a pulse lasting for one period of the input clk.

Lecture 11 Slide 16PYKC 19 Nov 2024 EE2 Circuits & Systems

Example 4: delay module (1)

u Here is a very useful module that combines a FSM with a counter.
u It detects the rising edge on trigger, then wait (delay) for n clk cycles before producing a

1-cycle pulse on time_out.
u The external port interface for this module is shown below. We assume that n is a 7-bit

number, or a maximum of 127 sysclk cycles delay.

Lecture 11 Slide 17PYKC 19 Nov 2024 EE2 Circuits & Systems

Example 4: delay module (2)

IDLE

output: time_out

0

COUNT
-ING

0

TIME_
OUT

1

trigger

(count = 0)

~trigger
WAIT_
LOW

0

trigger

~trigger

Lecture 11 Slide 18PYKC 19 Nov 2024 EE2 Circuits & Systems

Example 4: delay module (3)

